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This paper describes a numerical method with two time levels for solving par-
tial differential equations that represent layered models of ocean circulation. The
method is designed to be used with a barotropic–baroclinic splitting that separates
the fast and slow motions into subsystems that are solved by different techniques.
With this method, some of the dependent variables are predicted and then corrected.
After the initial prediction steps, all steps involve centered differencing and averag-
ing about the midpoint of the time interval in question. The Coriolis and pressure
terms are evaluated at the same time levels to avoid a first-order truncation error in
the geostrophic balance between those terms. Compared to the three-level leapfrog
method that is widely used in geophysical fluid dynamics, the present method does
not admit a computational mode, and the maximum permissible time step is at least
twice as large. In addition, with the two-level method it is possible to use a nearly
nonoscillatory advection algorithm to solve the equations for mass and momentum.
In a simple test problem, the present method gives less phase error than the leapfrog
method and two other methods, and it does not give any amplitude error. The dif-
ferences are especially large when comparing the present method to the leapfrog
method. The two-level method also gives good results in a nonlinear test problem
involving vanishing layers at the top and bottom of the fluid domain and an interface
moving along sloping bottom topography. c© 2002 Elsevier Science (USA)

Key Words: stability analysis; time-stepping; barotropic–baroclinic splitting; lay-
ered ocean circulation models.

1. INTRODUCTION

The goal of this paper is to develop a numerical method with two time levels for solving
partial differential equations that describe layered models of ocean circulation. Such models
admit motions varying on a wide range of time scales, and for the sake of computational effi-
ciency the fast and slow motions are often split into subsystems that are solved by different
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techniques. The present time-stepping method is developed for use with such splittings.
In addition, the method provides a framework for incorporating nearly nonoscillatory ad-
vection schemes for solving the equations for conservation of mass and momentum. More
generally, the time-stepping method can be applied to the shallow-water equations for a
single-layer fluid, and it is proposed as an alternative to the three-level leapfrog method
which is widely used in geophysical fluid dynamics.

The physical context of this work is the following. We consider ocean circulation models
based on isopycnic coordinates, for which the vertical coordinate is potential density (density
adjusted adiabatically to a reference pressure) or a related quantity. A vertical discretization
in this coordinate system amounts to dividing the fluid into layers that are approximately
immiscible, which has advantages for modeling the subtle exchanges that occur between
the upper and lower regions of the ocean (Bleck et al. [3]). An isopycnic model can be
regarded as a stack of shallow-water models, with mechanisms for communication between
layers.

For a splitting of the fast and slow motions, we use a splitting introduced by Bleck
and Smith [4], with modifications proposed by Higdon and de Szoeke [12] to improve the
stability of the algorithm. With this splitting, the fast motions are represented by a two-
dimensional, vertically integrated system (the “barotropic” system) that is similar to the
shallow-water equations. Compared to [4], the main idea in [12] is to use a more explicit
vertical averaging when deriving this system. The barotropic system models the motions
of fast external gravity waves, which are similar to shallow-water waves, and it is solved
either explicitly with short time steps or implicitly with a long time step. The remaining
motions are much slower and are modeled by a three-dimensional system (the “baroclinic”
system), which is solved explicitly with a long time step.

One option for a time-stepping scheme for such a system is to use the leapfrog method,
which is a three-level method based on second-order centered differencing. This method
is used, for example, in the Miami Isopycnic Coordinate Ocean Model [3, 4] to solve the
baroclinic momentum equations, and it is also used in the Bryan–Cox class of z-coordinate
models (e.g., [5]). However, the leapfrog method admits a computational mode consisting of
rapid, grid-scale oscillations with respect to time. Essentially, with this method the computed
time derivative at time tn is a centered difference of values from times tn−1 and tn+1, and
a solution could be balanced in space but admit sawtooth oscillations in t . In a nonlinear
model, these oscillations can grow and eventually cause a failure in the computation, so it
is necessary to introduce some sort of time smoothing or filtering in order to prevent this
from occurring (e.g., Asselin [1]). Such a process is not based on physical modeling but
on computational necessity instead. In the case of the Asselin filter, the accuracy of the
time discretization is reduced to first order (Durran [6]). In addition, the leapfrog method
is unstable when applied to diffusion processes, so special consideration must be given to
viscous terms.

If a time-stepping method involves only two time levels, then the above computational
mode cannot be present. In addition, a two-level method allows the possibility of using nearly
nonoscillatory advection algorithms. In a layered model, the mass conservation equation
is essentially a statement about the thickness of the fluid layers, and for this equation it is
necessary to use an advection algorithm which guarantees that the computed thicknesses
remain nonnegative. Given the development of numerical methods to date, this requirement
apparently implies that a two-level method must be used. If a two-level, nearly nonoscillatory
scheme were used for the entire set of baroclinic equations, then the mass and momentum
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equations would be discretized in a consistent manner, and using such a scheme for the
momentum equations could prevent the appearance of spurious large velocities that cause
computational instability.

In an analysis of stability of barotropic–baroclinic splitting, Higdon and de Szoeke [12]
considered two different schemes for advancing the baroclinic equations in time. One is
the leapfrog method and the other is a two-level method based on the forward–backward
method [10, 14]. As implemented in [12], the mass variable is advanced with a forward step,
and the velocity is then advanced with a backward step. With this sequence of operations,
the Coriolis and pressure terms are evaluated at different times. Large-scale geophysical
flows are typically characterized by a balance (the “geostrophic balance”) between the
Coriolis effect and the horizontal pressure gradient, and with the scheme in [12] there is
a first-order time truncation error in this balance. In addition, in order to provide a stable
yet explicit formulation of the Coriolis terms, the Coriolis terms are implemented in [12]
with a weighted average of velocities between times tn and tn+1 (Wang and Ikeda [21]), and
this biased averaging can have the effect of introducing damping at zero wavenumber. The
Coriolis force is not a dissipative mechanism, so this damping is a numerical artifact instead
of a physical process. A similar treatment of Coriolis terms is also used in a stable two-
level method that Hallberg [9] developed for barotropic–baroclinic splitting. In this method
all dependent variables are predicted and then corrected. This scheme uses weighted time
averages of various terms, and depending on the weighting coefficients there may be a
first-order error in the geostrophic balance.

With the algorithm developed in the present paper, some of the dependent variables are
predicted from time tn to time tn+1; the layer thickness is then advanced to time tn+1; and
finally the remaining variables are corrected. After the initial prediction steps, all of the
subsequent steps are based on centered differencing and averaging about the middle time
tn+1/2 = (tn + tn+1)/2. In a sense, the method is based on the trapezoidal method for solving
initial-value problems for ordinary differential equations. With this method, the Coriolis
and pressure terms are always evaluated for the same value of t . During the correction step,
the Coriolis terms are given an implicit represention which can be implemented directly or
with a simple iteration, depending on the structure of the spatial grid. Under the conditions
of a linear stability analysis, the maximum permissible time step with this method is at least
twice as large as that of the leapfrog method.

As noted by Smolarkiewicz and Margolin [18], a second-order advection algorithm re-
quires that the advective velocity be evaluated at the intermediate time tn+1/2, so that certain
error terms are compensated appropriately. With the sequencing of steps used in the present
time-stepping method, this velocity is available when the layer thickness is updated and
when the momentum variables are corrected.

An outline of the paper is as follows. Section 2 describes the basic properties of the
time-stepping method, mainly in the setting of the linearized shallow-water equations, and
it includes comparisons to other methods in simple contexts. In Section 3, the method is
extended to a barotropic–baroclinic splitting for multilayer models. This section includes a
linearized analysis of stability for the case where the barotropic equations are solved exactly
and the case where an implicit method of Bates [2] is used to solve the barotropic equations
implicitly. Section 4 describes some aspects of implementing the time-stepping method in a
nonlinear setting. Here, the multidimensional positive definite advection transport algorithm
(MPDATA) of Smolarkiewicz and collaborators (e.g., [18]) is used to solve the mass and
momentum equations. This section also addresses some issues related to thin layers and
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variable bottom topography. Some computational results involving a nonlinear test problem
are described in Section 5. This problem involves thin layers at the top and bottom of the
fluid domain and a fluid interface moving upward and downward along sloping bottom
topography. Some remarks on computational efficiency are included at the end of that
section.

2. BASIC PROPERTIES

In this section, we describe some of the basic properties of the time-stepping method
developed in this paper. After giving a motivation for the scheme in Section 2.1, we describe
the method as applied to the linearized shallow-water equations for a single-layer fluid. This
case serves as a prototype for the nonlinear multilayer algorithm discussed in Sections 3
through 5. The discussion in the present section includes comparisons to other time-stepping
methods in simple settings.

2.1. Motivation

The time-stepping method used here is motivated by the trapezoidal method for ordinary
differential equations. For the equation u′(t) = f (t, u), this method has the form

un+1 = un + �t · 1

2
[ f (tn+1, un+1) + f (tn, un)], (1)

where un denotes an approximation to u(tn), and �t = tn+1 − tn .
Some desirable features of (1) are indicated by its stability region. Suppose that a numer-

ical method is applied to the equation u′(t) = λu, where λ is constant. The stability region
for that method is the set of all complex values of λ�t such that all solutions of the discrete
equation are bounded as t → ∞. In the case of the continuous equation u′(t) = λu, all
solutions are bounded if and only if Re λ ≤ 0. The trapezoidal method (1) has an analogous
property, as a calculation shows that the stability region S for that method is the left half
plane. In the case λ = iω where ω is real, the quantity λ�t lies on the boundary of S, and
solutions of the difference equation (1) neither grow nor decay as t → ∞. This corresponds
to the oscillatory behavior of solutions u(t) = Ceiwt of the continuous problem. Similarly,
if Re λ < 0, then all solutions of the difference equation decay as t → ∞, as do the solutions
of the continuous problem.

On the other hand, the stability region for the leapfrog method,

un+1 = un−1 + 2�t f (tn, un), (2)

consists entirely of the segment on the imaginary axis between the points −i and i . This
method is therefore unstable when applied to problems in which damping is present. How-
ever, geophysical fluid models typically include a diffusion term. One approach that has
been used to resolve this problem while using the leapfrog method is to evaluate the diffu-
sion term at time tn−1 instead of time tn (e.g., Durran [6]), thus compromising the centered
nature of the time differencing. In addition, the leapfrog scheme admits the troublesome
computational modes discussed earlier.

In the case of the backward Euler method un+1 = un + �t f (tn+1, un+1), the stability
region is the exterior of the unit circle centered at λ�t = 1. This method thus damps
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all motions that are damped physically, but it also damps motions that should be purely
oscillatory. In the case of Runge–Kutta methods or other linear multistep methods, the
stability regions are bounded and have boundaries that do not coincide with the imaginary
axis (Gear [7]). For none of these methods do the cases of numerical damping and numerical
oscillation coincide with the cases of physical damping and physical oscillation, as they do
with the trapezoidal method.

2.2. Numerical Algorithm

The preceding properties of the trapezoidal method make it a desirable basis for
constructing a two-level time-stepping method. However, the trapezoidal method is im-
plicit, which causes difficulties with implementation in multidimensional models. In this
section, we show that a prediction and correction of some of the dependent variables make
it possible to avoid a fully implicit algorithm and yet maintain the general flavor of a trape-
zoidal time discretization. It is not necessary to predict and correct all of the dependent
variables.

The algorithm is stated here in terms of the linearized shallow-water equations,

∂u

∂t
− f v = −g

∂h

∂x
∂v

∂t
+ f u = −g

∂h

∂y
(3)

∂h

∂t
+ H

(
∂u

∂x
+ ∂v

∂y

)
= 0

(Gill [8], Pedlosky [15]). Here, u(x, y, t) and v(x, y, t) are the x- and y-components of
velocity, respectively; h(x, y, t) is the perturbation in the elevation of the free surface relative
to its equilibrium state; H is the mean depth of the fluid; f is the Coriolis parameter, which
represents the effect of a rotating reference frame; and g is the acceleration due to gravity.
Here, H and f are assumed constant, and the system has been linearized about a state of
zero flow. In anticipation of the later extension of the algorithm to multilayered models, the
quantities H and h will be regarded as the equilibrium thickness and the perturbation in
layer thickness, respectively.

For the sake of notational simplicity, the spatial derivatives are not discretized in the
following description of the time-stepping scheme.

Step 1. Predict the velocity using a forward step.

upred = un + ( f �t)vn − (g�t)
∂hn

∂x
(4)

vpred = vn − ( f �t)un − (g�t)
∂hn

∂y
.

Step 2. Update the layer thickness, using an average of old and predicted velocities.

hn+1 = hn − (H�t)
∂

∂x

(
upred + un

2

)
− (H�t)

∂

∂y

(
vpred + vn

2

)
. (5)
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Step 3. Correct the velocity, using an implicit representation of the Coriolis terms and a
time average of layer thicknesses.

un+1 = un + f �t

2
(vn+1 + vn) − (g�t)

∂

∂x

(
hn+1 + hn

2

)
(6)

vn+1 = vn − f �t

2
(un+1 + un) − (g�t)

∂

∂y

(
hn+1 + hn

2

)
.

If the spatial grid is designed so that u and v are defined at the same grid points, then the
Coriolis terms in Step 3 can be implemented by solving a 2 × 2 linear system at each grid
point. On the other hand, if a staggered grid is used in which u and v are defined at different
points, then the Coriolis terms can be implemented with a fixed-point iteration. This issue
is discussed in Section 4.2.

The preceding algorithm consists of a first-order prediction step, followed by steps that
employ centered differencing and averaging about the middle time tn+1/2 = (tn + tn+1)/2.
A calculation of truncation errors shows that the overall method is second-order accurate
with respect to t .

The stability of the method can be described as follows. Suppose, for example, that
the system (4)–(6) is discretized in space with centered second-order finite differences on
the “C-grid” of Arakawa (e.g., [10, 14]). With this grid, mass variables are defined at the
centers of grid cells, and values of normal velocities are defined at the centers of boundary
segments of mass cells. In this situation, the preceding algorithm is stable if and only if the
Courant–Friedrichs–Lewy condition

(
c�t

�x

)2

+
(

c�t

�y

)2

< 1 (7)

is satisfied. Under such circumstances, the method is also nondissipative. That is, for solu-
tions having a space–time dependence of the form λneikx+ily, where λ is a constant and the
superscript on λ is an exponent, we have |λ| = 1 for all (k, �) and all roots λ whenever (7)
is satisfied. The stability analysis will be omitted here, for the sake of brevity.

The condition (7) is less restrictive than the corresponding condition for the leapfrog
method. A calculation shows that if f = 0, the leapfrog method is stable if and only if
(c�t/�x)2 + (c�t/�y)2 < 1/4. For given �x and �y, the maximum allowable time step
is half that of the method described above. More generally, if f = 0, then the leapfrog
method is stable if and only if

(νx sin(k�x/2))2 + (νy sin(��y/2))2 +
[

1

2
( f �t) cos(k�x/2) cos(��y/2)

]2

< 1/4

for all (k, �). Here, νx = c�t/�x and νy = c�t/�y. In this case, the time step must be
restricted further.

2.3. Comparisons to Other Methods

We next give two comparisons of the two-level method (4)–(6) with other time-stepping
schemes. In the first case, we compare the dispersion relations for the leapfrog method and
the two-level method. We then compare phase and amplitude errors in a simple oscillatory
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test problem. The second case includes comparisons to the two-level methods developed in
[9], [12] for barotropic–baroclinic splittings.

2.3.1. Dispersion Relation

One reason for using a two-level time-stepping method is to avoid the computational
modes that are allowed by the leapfrog scheme. Here we derive numerical dispersion rela-
tions and verify that the computational modes are in fact avoided with the present two-level
method.

For simplicity, consider the one-dimensional shallow-water equations

∂u

∂t
= −g

∂h

∂x
(8)

∂h

∂t
+ H

∂u

∂x
= 0.

Discretize in space using second-order centered differences on a staggered grid, in analogy
to the two-dimensional C-grid described above. Then discretize in time using the two-level
method of Section 2.2 and the leapfrog method (2). For each method, insert oscillatory
solutions of the form u(x, t) = û(k, ω)eikx−iωt , h(x, t) = ĥ(k, ω)eikx−iωt , with k and ω

real. Each method is stable and nondissipative if the Courant number ν = c�t/�x is
limited suitably, so it is no restriction to assume that the frequency ω is real.

For the two-level scheme (4)–(6), a calculation yields the dispersion relation

(
sin

ω�t

2

)2

= ν2

(
sin

k�x

2

)2

, (9)

provided ν < 1, which is the stability condition for this method in the case of one space
dimension. In the case of the leapfrog method, the dispersion relation is

1

4
(sin ω�t)2 = ν2

(
sin

k�x

2

)2

, (10)

and the stability condition is ν < 1/2. If the system (8) is discretized with respect to x but
not with respect to t , then an analogous calculation yields the relation

(
ω�t

2

)2

= ν2

(
sin

k�x

2

)2

, (11)

which can be compared with the preceding relations to illustrate the effects of time dis-
cretizations. For the continuous problem (8), the frequency and wavenumber are related by
ω2 = c2k2. In each of these cases, the dispersion relation indicates the possible modes of
wave propagation in the system, and the group velocity cg = dω/dk gives the rate at which
energy is propagated (Trefethen [20]).

Figure 1 shows plots of dispersion relations for the case ν = 0.4, which is a value for
which the two-level and leapfrog methods are both stable. Due to aliasing, it suffices to
plot the relations for |k�x | ≤ π and |ω�t | ≤ π . In the left frame, the solid curves are the
graph of the dispersion relation (9) for the two-level scheme, and in the right frame, the
solid curves show the dispersion relation (10) for the leapfrog scheme. The dashed curves
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FIG. 1. Plots of dispersion relations for the two-level method and the leapfrog method, with ν = 0.4. In
each graph frame, the dashed curves represent the dispersion relation for the semidiscrete scheme obtained by
discretizing in space but not in time.

in each frame show the dispersion relation (11) for the semidiscrete case. In the case
of the leapfrog method, the lobes in the dispersion relation near ω�t = ±π represent
computational modes which bear no relation to the modes of propagation allowed by the
continuous system (8). These computational modes are not present in the dispersion relation
for the two-level scheme.

In the case shown in Fig. 1, the dispersion relation for the two-level method gives a better
approximation to the dispersion relation for the semidiscrete case than does the dispersion
relation for the leapfrog method. This suggests that the two-level method generates less
time discretization error. This observation is confirmed by the following oscillatory test
problem.

2.3.2. Phase and Amplitude Errors

To construct a test problem for comparing phase and amplitude errors due to time-
stepping, first transform the system (3) as follows. Let c = √

gH denote the speed of gravity
waves, let η = h/H denote the relative perturbation in the free-surface elevation, and replace
the nondimensional ratios u/c and v/c with the symbols u and v, respectively. Then apply
a Fourier transform with respect to x and y to obtain

∂ û

∂t
− f v̂ = −c(ik)η̂

∂v̂

∂t
+ f û = −c(i�)η̂ (12)

∂η̂

∂t
+ c(ikû + i�v̂) = 0.

Equivalently, consider solutions of the system (3) having the form

u(x, y, t) = û(k, �, t)eikx+i�y

v(x, y, t) = v̂(k, �, t)eikx+i�y (13)

η(x, y, t) = η̂(k, �, t)eikx+i�y .
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FIG. 2. Plots of the free-surface elevation for an oscillatory test problem. The horizontal scale represents
the number of time steps, and the vertical scale represents the elevation relative to the maximum elevation at
a fixed (x, y). In each plot, the solid curve represents the exact solution. In the top frame, the dot–dash curve
shows the solution obtained with the two-level method (4)–(6). The dot–dash curve in the middle frame shows
the solution obtained with the leapfrog method. The dot–dash curve in the bottom frame was obtained from the
leapfrog method, combined with an Asselin filter having weight coefficients (0.05, 0.90, 0.05).

The evolution of the amplitude coefficients û, v̂, and η̂ through time yields the behavior of
the solutions (13) at a fixed point in space.

In the following tests, assume f �t = 0.25, kc�t = 0.25, and �c�t = 0. (Each of these
quantities is dimensionless.) If L = 2π/k denotes a wavelength with respect to x , then
c�t = L/(8π). The distance traveled by a wave in one time step is thus much less than the
wavelength, and in this sense the wave is well-resolved.

Figure 2 shows plots of the free-surface elevation η̂(k, �, t) over 400 time steps. In each
frame, the solid curve shows the exact solution to (13), assuming η̂(k, �, 0) = 1. In the top
frame, the dot–dash curve shows the solution computed with the two-level method (4)–(6).
A small phase error has become noticeable by the end of the period of integration. In the
middle frame, the dot–dash curve shows the solution computed with the leapfrog method.
In this case, the phase error is much larger than in the top frame, and by the end of the
period of integration the numerical solution is completely out of phase.

In the bottom frame in Fig. 2, the dot–dash curve shows the solution computed with the
leapfrog method, with the Asselin [1] filter included. This filter, when applied to a function
φ, can be represented in the form

φ̄n := γφn+1 + (1 − 2γ )φn + γ φ̄n−1. (14)

Here, φn denotes the solution before filtering, φ̄n denotes the solution after filtering, and γ is
a constant between 0 and 1. The smoothing operation (14) is applied to the solution at time
tn immediately after the solution at time tn+1 is computed, and it is often used in geophysical
calculations in order to prevent the computational mode from overwhelming the computed
solution. In the case shown in Fig. 2, the value γ = 0.05 is used, so that the weighting
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coefficients are (0.05, 0.90, 0.05). The computed solution shows a large amplitude error, in
addition to the phase error. Larger values of γ have been used in geophysical calculations
(see Durran [6]), and these larger values cause larger amplitude errors.

We next consider the two-level methods used by Higdon and de Szoeke [12] and Hallberg
[9] in the context of a barotropic–baroclinic splitting for multilayer models. To apply these
methods to the present case, we delete the terms in the baroclinic (slow) equations which
involve barotropic (fast) quantities, and the result is a system having the same structure as
the shallow-water equations.

In the present situation, the method of Higdon and de Szoeke [12] can be written in the
form

η̂n+1 = η̂n − i(kc�t)ûn − i(�c�t)v̂n

ûpred = ûn + ( f �t)v̂n − i(kc�t)η̂n+1

v̂pred = v̂n − ( f �t)ûn − i(�c�t)η̂n+1 (15)

ûn+1 = ûn + ( f �t)[av̂pred + (1 − a)v̂n] − i(kc�t)η̂n+1

v̂n+1 = v̂n − ( f �t)[aûpred + (1 − a)ûn] − i(�c�t)η̂n+1.

Here, a is a constant with a > 0.5. The parameter a represents a weighted time averaging
of the Coriolis terms, and the method (15) is unstable if a = 0.5. In [12] it is shown that
the method is stable for the shallow-water equations, with centered differencing on a C-
grid, if and only if a ≥ 1/(1 +

√
1 − ( f �t)2). In addition, the method is nondissipative

for given spatial wavenumbers (k, �) if and only if a = 1/(1 +
√

1 − φ2), where φ =
f �t cos(k�x/2) cos(��y/2). If f �t = 0.25 and k = � = 0, then the minimum value of a
is approximately 0.508. The dot–dash curve in the upper frame in Fig. 3 shows the solution
obtained with the method (15) with a = 0.53. Compared to the solution shown in the top
frame in Fig. 2, this solution shows a greater phase error, and there is an amplitude error
due to damping. Larger values of a give stronger damping.

In large-scale geophysical flows, the dominant balance is typically the geostrophic bal-
ance between the Coriolis terms and pressure gradient. In the system (12), the pressure

FIG. 3. Plots of free-surface elevation. The top frame shows the exact solution and the solution obtained with
the method (15) of Higdon and de Szoeke [12], with a = 0.53. The bottom frame shows the exact solution and the
solution obtained with the method (16) of Hallberg [9], with β = µ = 0.5 and ψ = ζ = 0.52. For each method,
larger values of the stated coefficients give stronger damping.
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gradient is represented by the spatial derivatives of η. In the method (15), the Coriolis terms
and pressure gradient are evaluated at different times, so there is a first-order time truncation
error in the geostrophic balance.

For the present test problem, the method of Hallberg [9] can be written in the form

ûpred = ûn + ( f �t)v̂n − i(kc�t)η̂n

v̂pred = v̂n − ( f �t)ûn − i(�c�t)η̂n

η̂pred = η̂n − i(kc�t)[βûpred + (1 − β)ûn] − i(�c�t)[βv̂pred + (1 − β)v̂n]
(16)

ûn+1 = ûn + ( f �t)[ψv̂pred + (1 − ψ)v̂n] − i(kc�t)[ζ η̂pred + (1 − ζ )η̂n]

v̂n+1 = v̂n − ( f �t)[ψ ûpred + (1 − ψ)ûn] − i(�c�t)[ζ η̂pred + (1 − ζ )η̂n]

η̂n+1 = η̂n − i(kc�t)[µûn+1 + (1 − µ)ûn] − i(�c�t)[µv̂n+1 + (1 − µ)v̂n].

Here, β, ψ, ζ , and µ are constants which represent weighted time averages. If all of these
coefficients are equal to 0.5, then the method is unstable. The lower frame in Fig. 3 shows
the solution obtained with the method (16) with β = µ = 0.5 and ψ = ζ = 0.52. This
solution shows a greater phase error than the solution shown in the top frame in Fig. 2,
and there is an amplitude error due to damping. Larger values of the parameters β, ψ, ζ ,
and µ are discussed in [9], and these give stronger damping. If ψ = ζ , then the method (16)
admits a first-order time truncation error in the geostrophic balance.

If kc�t = �c�t = 0, then the two methods produce solutions that are similar to those
shown in Fig. 3. In this case, the analytical solution consists entirely of inertial oscillations
with angular frequency f . However, the numerical methods can introduce damping, ap-
parently due to the treatment of the Coriolis terms. Numerical damping is often used in
geophysical calculations in order to suppress grid-scale noise, but the present methods can
induce numerical damping of motions that are resolved well by the grid.

3. THREE-DIMENSIONAL LAYERED MODEL

Here we extend the algorithm of the preceding section to the case of a three-dimensional
layered ocean model.

3.1. Governing Equations

In this discussion, the governing equations are expressed in terms of isopycnic coordi-
nates. In addition, it is assumed that the fluid is hydrostatic, which is equivalent to assuming
that the depth is small relative to the horizontal length scale.

Here we consider a vertically discrete system consisting of R layers, each of constant den-
sity. Number the layers 1 through R, with indices increasing downward, and let αr denote the
specific volume (reciprocal of density) in layer r . Let ur (x, y, t) = (ur (x, y, t), vr (x, y, t))
denote the horizontal velocity in layer r, �pr (x, y, t) the vertical pressure difference be-
tween the bottom and top of layer r , and Mr (x, y, t) = αp + gz the Montgomery potential in
layer r . Here, g is the acceleration due to gravity. The hydrostatic relation ∂p/∂z = −α−1g
implies that the Montgomery potential is independent of depth in a layer of constant density
and that �pr/g is the mass per unit horizontal area in layer r . We then consider the system
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of equations

∂ur

∂t
+ (ur · ∇)ur + f k × ur = −∇Mr + D(ur , �pr ) (17)

∂�pr

∂t
+ ∇ · (ur�pr ) = 0 (18)

Mr+1 − Mr = pr+1/2(αr+1 − αr ) (19)

(Bleck and Smith [4]). Here, ∇ = (∂/∂x, ∂/∂y), pr+1/2 denotes the pressure at the interface
between layers r and r + 1, k is the unit vector in the upward direction, and

D(ur , �pr ) = g�τr

�pr
+ 1

�pr
∇ · (AH�pr∇ur ) (20)

contains the terms involving stresses and horizontal viscosity. The stresses contained in the
vertical differences �τr in Eq. (20) are due to wind stress at the top of the fluid domain,
frictional stress at the bottom, and shear stress due to vertical variations in the horizontal
velocity. The present formulation of the governing equations includes an assumption that
mass is not exchanged between layers. Such exchanges are possible in the real ocean, since
the vertical transport of heat and salt can cause surfaces of constant density to move, but
these effects will not be considered here.

3.2. Barotropic–Baroclinic Splitting

The system (17)–(19) admits motions varying on a wide range of timescales, and this
creates major problems related to computational efficiency. One approach to this situation
is to split the fast and slow motions into separate subproblems and then solve the individual
subproblems using different techniques that are appropriate for those cases. Here we use
a splitting introduced by Bleck and Smith [4], with modifications developed by Higdon
and de Szoeke [12] to improve its stability. In the following, the “barotropic” system is a
two-dimensional system that represents the dynamics of fast external gravity waves, which
are manifested in part by perturbations in the elevation of the free surface. The solutions of
this system are similar to those of the shallow-water equations for a fluid of constant density.
The “baroclinic” system is a three-dimensional system that represents the remaining slower
motions, which include internal waves and advective motions.

Let p′
b(x, y) be the pressure at the bottom of the fluid domain at a reference state, such as

an equilibrium state or initial state, and let pb(x, y, t) be the bottom pressure at an arbitrary
state. Define a dimensionless quantity η(x, y, t) by pb = p′

b + p′
bη, so that η is the relative

perturbation in bottom pressure, with |η| � 1. The quantity p′
bη/g is the perturbation in

the total mass per unit horizontal area in a water column, and p′
bη serves as the dependent

mass variable in the barotropic system. A baroclinic mass variable �p′
r is then defined

by �pr (x, y, t) = (1 + η(x, y, t))�p′
r (x, y, t) for 1 ≤ r ≤ R. This relation is based on the

idea that an external wave causes all fluid layers to thicken or thin by approximately the
same proportion.

The barotropic velocity is the mass-weighted vertical average of u given by

ū(x, y, t) =
R∑

r=1

�p′
r

p′
b

ur . (21)
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The quantity p′
bū/g is the net horizontal mass flux over all layers. The baroclinic velocity

is the residual u′
r (x, y, t) = ur (x, y, t) − ū(x, y, t), which has a mass-weighted vertical

average equal to zero.
The barotropic system is

∂ū
∂t

+ f k × ū = −∇M + G (22)

∂

∂t
(p′

bη) + ∇ · (p′
bū) = 0 (23)

and the baroclinic system is

∂u′
r

∂t
+ (ur · ∇)ur + f k × u′

r = −(∇Mr − ∇M) + D(ur , �pr ) − G (24)

∂�p′
r

∂t
+ ∇ · (ur�p′

r ) = �p′
r

p′
b

∇ · (p′
bū). (25)

(See Bleck and Smith [4] and Higdon and de Szoeke [12].) The barotropic momentum
equation (22) is a vertical average of the momentum equation (17). The quantity ∇M is the
mass-weighted vertical average of ∇M ; and the residual term G(x, y, t) includes the vertical
averages of the nonlinear, stress, and viscosity terms in (17). An explicit representation of
∇M is given by Higdon [11]. The baroclinic momentum equation (24) is obtained by
subtracting (22) from (17). When (24) is solved, the zero-mean condition on u′ is used to
compute G, which is then transferred to the barotropic momentum equation (22) to serve
as a forcing term.

The three-dimensional baroclinic system can be solved explicitly with a long time step
that is appropriate for resolving the slow motions. The two-dimensional barotropic system
can be solved explicitly with shorter time steps or implicitly with the same time step as the
baroclinic system. The implicit approach is discussed and used below.

3.3. Numerical Algorithm

Here we describe a two-level time-stepping scheme for the coupled barotropic–baroclinic
system (22)–(25). Essentially, the algorithm developed in Section 2.2 for the shallow-water
equations is applied to the baroclinic equations, and some additional steps are introduced in
order to account for the barotropic equations. The following algorithm describes evolution
of the system from time tn to time tn+1, where the time step �t = tn+1 − tn is determined
by the slow motions described by the baroclinic equations.

Step 1. Predict the baroclinic velocity u′
r = (u′

r , v
′
r ) at time tn+1 by applying a forward

time difference to the baroclinic momentum equation (24). After all of the other terms in that
equation are computed, the quantity G is computed by enforcing the zero-mean condition
on u′

r at time tn+1. This process is similar to a procedure described in Section 2.3 of Higdon
and de Szoeke [12].

Step 2. Predict the barotropic variables ū, v̄, and p′
bη by solving the barotropic system

(22), (23). The quantity ∇M in (22) involves both the barotropic quantity p′
bη and the

baroclinic mass variables �p′
r (see Higdon [11]). During the present step, use the values of

�p′
r from time tn .
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Step 3. Use the thickness equation (25) to compute �p′
r at time tn+1. For an advective

velocity ur , use the average of the old and predicted total velocities u′
r + ū in order to obtain

a velocity at time tn+1/2 = tn + �t/2.
Step 4. Correct the baroclinic velocity u′

r = (u′
r , v

′
r ). In the pressure, viscous, and stress

terms, use averages of values from times tn and tn+1. The values from time tn+1 are based
on the updated values of �p′

r and the predicted values of other quantities. Implement the
Coriolis terms implicitly, using an iteration if necessary.

Step 5. Correct the barotropic variables ū, v̄, and p′
bη. For the baroclinic quantities

appearing in ∇M , use averages of values from times tn and tn+1.

In Step 3, the thickness equation must be solved with an advection algorithm which en-
sures that the layer thicknesses remain nonnegative. In addition, the baroclinic momentum
equation (24) can be converted to a flux form in which the dependent variable is a baroclinic
momentum density, and the resulting equation can also be solved with an advection algo-
rithm. This process is discussed in Section 4, and it was used in the numerical computations
reported in Section 5.

As pointed out by Smolarkiewicz and Margolin [18], a second-order advection algorithm
requires that the advective velocity be evaluated at the intermediate time tn+1/2, so that
certain terms in the truncation error are compensated appropriately. These authors note
that the advective velocity at time tn+1/2 can be computed with a prediction step or with
an extrapolation, and this strategy proved successful in the examples reported in [18].
In the setting of a barotropic–baroclinic splitting, an analogous procedure would be to
predict the baroclinic and barotropic velocities directly at time tn+1/2. However, the resulting
barotropic–baroclinic algorithm turns out to be linearly unstable, according to a stability
analysis similar to the one given in the next section. On the other hand, a linearly stable
method is obtained if the predicted variables are obtained at time tn+1 and then time averages
are used when needed. This result does not prove stability in the nonlinear case, but it does
suggest that time averages be tried in the algorithm described above. The algorithm gave
good results in the nonlinear calculations described in Section 5.

3.4. Stability Analysis

We now analyze the stability of the preceding algorithm as applied to a linearization
of the barotropic–baroclinic system (22)–(25). For reasons of space, we do not include
an analysis of the analogous (unstable) algorithm in which the predicted quantities are
computed directly at time tn+1/2.

For the sake of the analysis, assume that the bottom of the fluid domain is level and that
the fluid consists of two layers having equilibrium thicknesses � p̃1 and � p̃2 and specific
volumes α1 and α2, with index 1 referring to the upper layer. Also assume that the stress
and viscosity terms are zero and that the flow is a small perturbation of a state of zero flow
and level fluid interfaces.

As noted in Section 3.2, the baroclinic quantity u′ has mass-weighted vertical average
equal to zero. In the present linearized setting, this relation has the form u′

1(� p̃1/ p̃b) +
u′

2(� p̃2/ p̃b) = 0, where p̃b = � p̃1 + � p̃2, so if u′
1 is known then u′

2 is determined uniquely.
In addition, the baroclinic layer thicknesses �p′

1 and �p′
2 satisfy �p′

1 + �p′
2 = p′

b = p̃b,
so if �p′

1 is known then �p′
2 is determined. In the following analysis, it therefore suffices

to consider the baroclinic equations in the upper layer only.



TWO-LEVEL TIME-STEPPING METHOD 73

The linearization of the system (22)–(25) was derived by Higdon and de Szoeke [12]. In
order to state this system, let

c0 =
(

α2 p̃b + (� p̃1)
2�α)

p̃b

)1/2

(26)

c1 =
(

� p̃1� p̃2�α

p̃b

)1/2

, (27)

where �α = α1 − α2. The quantities c0 and c1 are the speeds of external and internal waves,
respectively, in the present model. Replace the barotropic velocities ū(x, y, t) and v̄(x, y, t)
with the dimensionless variables ū/c0 and v̄/c0, and let u′(x, y, t) = u′

1/c1 and v′(x, y, t) =
v′

1/c1 denote dimensionless components of baroclinic velocity. Also let δ(x, y, t) denote the
perturbation in �p′

1, divided by the equilibrium thickness � p̃1. The linearized barotropic
equations can then be written in the form

∂ ū

∂t
− f v̄ = −c0

∂η

∂x
− γ c0

∂δ

∂x
(28)

∂v̄

∂t
+ f ū = −c0

∂η

∂y
− γ c0

∂δ

∂y
(29)

∂η

∂t
+ c0

(
∂ ū

∂x
+ ∂v̄

∂y

)
= 0, (30)

and the baroclinic equations are

∂u′

∂t
− f v′ = −c1

∂δ

∂x
− c1

∂η

∂x
(31)

∂v′

∂t
+ f u′ = −c1

∂δ

∂y
− c1

∂η

∂y
(32)

∂δ

∂t
+ c1

(
∂u′

∂x
+ ∂v′

∂y

)
= 0. (33)

Here γ = ( c1
c0

)2(
� p̃1

� p̃2
) =O(�α

α2
) � 1.

Assume that the system (28)–(33) is discretized in (x, y) with centered second-order
finite differences on a C-grid. Also assume that the system is defined for all (x, y) and that
f is constant, and apply a Fourier transform with respect to x and y. The actions of spatial
differences will be represented with the quantities

i K

�x
= eik�x/2 − e−ik�x/2

�x

i L

�y
= ei��y/2 − e−i��y/2

�y
;

thus K = 2 sin(k�x/2) and L = 2 sin(��y/2).
In the following analysis, we first assume that the barotropic equations are solved exactly

with respect to t for tn < t < tn+1 during both the prediction and correction steps. This is
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done in order to isolate the effects of the barotropic–baroclinic splitting and the overall time-
stepping scheme. In Section 3.5, we include the effects of one particular implicit method
for solving the barotropic equations.

After a Fourier transform, the barotropic system (28)–(30) becomes

∂

∂t




ˆ̄u
ˆ̄v

η̂


 = 1

�t




0 φ − 1
r (i Kνx )

−φ 0 − 1
r (i Lνy)

− 1
r (i Kνx ) − 1

r (i Lνy) 0







ˆ̄u
ˆ̄v

η̂


 + 1

�t




− γ

r (i Kνx )

− γ

r (i Lνy)

0


 δ̂.

(34)

Here, �t = tn+1 − tn is the time step for solving the baroclinic equations; r = c1/c0 � 1;
νx = c1�t/�x and νy = c1�t/�y denote the Courant numbers with respect to x and y,
respectively; and

φ = ( f �t) cos
k�x

2
cos

��y

2
.

The definition of φ contains trigonometric factors because four-point averages are used to
obtain values of v at u-points and to obtain values of u at v-points when evaluating the
Coriolis terms. In accordance with Steps 2 and 5 of the algorithm of Section 3.3, δ̂ = δ̂n

during the prediction step and δ̂ = (δ̂n+1 + δ̂n)/2 during the correction step.
The system (34) has the form

∂s

∂t
= 1

�t
As + 1

�t
b, (35)

where s = ( ˆ̄u, ˆ̄v, η̂)T , A is a 3 × 3 matrix, and b is a column vector. The matrix i A is
self-adjoint and thus has real eigenvalues and orthogonal eigenvectors. A calculation shows
that exactly one of these eigenvalues is zero, so the matrix A has two nonzero imaginary
eigenvalues and one eigenvalue equal to zero. Let Q be a unitary matrix such that Q−1 AQ
is diagonal, and use this matrix to diagonalize the system (35). A calculation yields

s(tn+1) = eAs(tn) + Z δ̂, (36)

where A is obtained by comparing (34) and (35),

Z = Q




eλ1 − 1
λ1

0 0

0 eλ2 − 1
λ2

0

0 0 1


 Q−1




− γ

r (i Kνx )

− γ

r (i Lνy)

0


 , (37)

and λ1 and λ2 are the nonzero eigenvalues of A.
We now formulate the prediction step in matrix–vector form. The predicted values of

baroclinic velocity are given by

û′pred = û′n + φv̂′n − i Kνx δ̂
n − i Kνx η̂

n

v̂′pred = v̂′n − φû′n − i Lνy δ̂
n − i Lνy η̂

n.
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The relative perturbation δ in the layer thickness is not predicted and corrected but instead
is updated in one step. However, for the sake of the matrix formulation, it is convenient to
define δ̂pred = δ̂n . The predicted values of the barotropic variables are given by Eqs. (36),
(37), with δ̂ = δ̂n . The prediction step is then




û′pred

v̂′pred

δ̂pred

ˆ̄upred

ˆ̄vpred

η̂pred




=




1 φ −i Kνx 0 0 −i Kνx

−φ 1 −i Lνy 0 0 −i Lνy

0 0 1 0 0 0
0 0 Z1 B11 B12 B13

0 0 Z2 B21 B22 B23

0 0 Z3 B31 B32 B33







û′n

v̂′n

δ̂n

ˆ̄un

ˆ̄vn

η̂n




, (38)

where (Z1, Z2, Z3)
T = Z , and Bi j is entry (i, j) of the matrix B = eA in (36). For later

usage, Eq. (38) is written in the form

wpred = Ewn. (39)

Next consider the final calculation of the solution at time tn+1. The updated value of the
baroclinic thickness is

δ̂n+1 = δ̂n − i Kνx · 1

2
(û′pred + û′n) − i Lνy · 1

2
(v̂′pred + v̂′n),

and the corrected components of baroclinic velocity are

û′n+1 = û′n + φ

2
(v̂′n+1 + v̂′n) − i Kνx · 1

2
(δ̂n+1 + δ̂n) − i Kνx · 1

2
(η̂pred + η̂n)

v̂′n+1 = v̂′n − φ

2
(û′n+1 + û′n) − i Lνy · 1

2
(δ̂n+1 + δ̂n) − i Lνy · 1

2
(η̂pred + η̂n).

The corrected values of the barotropic variables are given by (36), (37), with δ̂ = (δ̂n+1 +
δ̂n)/2. The solution at time tn+1 is then

F1w
n+1 = F0w

n + Fpredw
pred, (40)

where

F1 =




1 −φ/2 i Kνx/2 0 0 0

φ/2 1 i Lνy/2 0 0 0

0 0 1 0 0 0

0 0 −Z1/2 1 0 0

0 0 −Z2/2 0 1 0

0 0 −Z3/2 0 0 1




,
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F0 =




1 φ/2 −i Kνx/2 0 0 −i Kνx/2

−φ/2 1 −i Lνy/2 0 0 −i Lνy/2

−i Kνx/2 −i Lνy/2 1 0 0 0

0 0 Z1/2 B11 B12 B13

0 0 Z2/2 B21 B22 B23

0 0 Z3/2 B31 B32 B33




,

and

Fpred =




0 0 0 0 0 −i Kνx/2

0 0 0 0 0 −i Lνy/2

−i Kνx/2 −i Lνy/2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




,

where w j = (û′ j , v̂′ j , δ̂ j , ˆ̄u j
, ˆ̄v j

, η̂ j )T .
The steps (39) and (40) can be combined to yield

wn+1 = F−1
1 (F0 + Fpred E)wn ≡ Gwn. (41)

The amplification matrix G and the vectors wn+1 and wn are functions of the wavenumbers k
and �. If the powers Gn are bounded for 0 < n < ∞, uniformly in (k, �), then the algorithm
is stable.

Because of the complexity of the algorithm, we do not try to develop an analytical de-
scription of the eigenvalues and eigenvectors of G, but instead we compute some numerical
examples that suggest stability. Suppose, for example, that the equilibrium layer thicknesses
satisfy � p̃1/ p̃b = 0.25 and � p̃2/ p̃b = 0.75, the Courant numbers are νx = νy = 0.5,
the dimensionless Coriolis parameter is f �t = 0.5, and the relative difference in α is
�α/α2 = 0.004. The top frame of Fig. 4 shows a plot of the absolute values of the eigen-
values λ of G in this case, for 0 ≤ k�x ≤ π and � = 0. The middle frame shows a plot for
0 ≤ k�x ≤ π along the line � = k tan 30◦ in the (k, �) plane, and the bottom frame shows
a plot along the line � = k. For each plot, the interval 0 ≤ k�x ≤ π was divided into 1000
subintervals, and the eigenvalues of G were computed at each sample point. In each case, the
maximum of the absolute values is 1, and the minimum is very close to 1. Similar behavior
was found along numerous other lines of the form � = k tan θ for 0 ≤ θ ≤ 45◦. (Because
of symmetries, it suffices to search in this range of angles.) The empirical condition |λ| ≤ 1
suggests stability, and the additional condition |λ| ≈ 1 suggests little dissipation.

Eigenvalues were also calculated with numerous other values of �α/α2, f �t , νx , and
νy , with the constraint νx = νy . Overall, these experiments suggest that the method is stable
and nearly nondissipative for arbitrary values of f �t , provided that the Courant number
νx = νy is less than a bound which is approximately equal to 1/

√
2.

3.5. Implicit Solution of the Barotropic Equations

In the barotropic–baroclinic system (22)–(25), the fast barotropic equations could be
solved implicitly over the time interval tn < t < tn+1, or they could be solved explicitly



TWO-LEVEL TIME-STEPPING METHOD 77

FIG. 4. Plots of absolute values of the eigenvalues of the amplification matrix G along lines of the form
� = k tan θ in the (k, �) plane. The top, middle, and bottom frames correspond to θ = 0, θ = 30◦, and θ = 45◦,
respectively. In each case, the horizontal coordinate is k�x for 0 ≤ k�x ≤ π . The model parameters are νx = νy =
f �t = 0.5, �α/α2 = 0.004, � p̃1/ p̃b = 0.25, and � p̃2/ p̃b = 0.75. In this algorithm, the barotropic equations
are solved exactly with respect to t for tn < t < tn+1.

using many short subintervals of that interval. The efficiency of this process is a major
consideration with the time-stepping scheme discussed in the present paper, as the barotropic
equations are solved twice during each baroclinic step. In the present section, we outline
an implicit method which is much more efficient than explicit methods, and we discuss the
effect of this method on the stability of the coupled barotropic–baroclinic system. The main
conclusion is that the implicit scheme maintains stability and introduces a small amount of
dissipation at high wavenumbers.

The method used here is an alternating direction implicit (ADI) method that was devel-
oped by Bates [2] for the (single-layer) shallow-water equations. This method, with a note
regarding adaptation to a barotropic–baroclinic splitting, is as follows.

Step 1. Integrate from time tn to time tn+1/2 = tn + �t/2.

(a) Compute v̄n+1/2 explicitly.
(b) Discretize the momentum equation (22) to express ūn+1/2 in terms of p′

bη
n+1/2 and

v̄n+1/2, and use the mass equation (23) to express p′
bη

n+1/2 in terms of ūn+1/2 and v̄n .
Implement by solving a tridiagonal system for p′

bη
n+1/2. This step is implicit in the x-

direction.

Step 2. Integrate from time tn+1/2 to time tn+1.

(a) Compute ūn+1 explicitly.
(b) Compute v̄n+1 and p′

bη
n+1. This step is implicit in the y-direction.
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Note. The barotropic momentum equation includes the term ∇M , which involves p′
bη

and quantities involving the baroclinic layer thicknesses �p′
r (Higdon [11]). For reasons

of stability, the baroclinic quantities are not stepped along with p′
bη but instead are held

constant during the integration from time tn to tn+1/2 to tn+1. During the prediction step, the
baroclinic quantities are taken from time tn , and during the correction step, the baroclinic
quantities are averages of values from times tn and tn+1.

When Steps 1 and 2 are applied to the linearized shallow-water equations, the algorithm
is stable, nondissipative, and second-order accurate (Bates [2]).

In the tridiagonal system that is used to compute p′
bη, the off-diagonal entries include a

factor which is the value of p′
b at velocity points. Under a method used in Section 4.5 for

calculating layer thicknesses at velocity points, this factor is zero at locations where a grid
row is interrupted by a land mass. In such situations, the linear system for that grid row
is decoupled into separate linear systems for the disjoint water regions, so the presence of
land masses does not disrupt the process of solving the equations implicitly. However, these
issues do not arise in the computations described in Section 5, so further details will not be
included here.

Since the linear system is tridiagonal, the computational work in implementing each
of Steps 1 and 2 is comparable to the work involved in solving the barotropic equations
explicitly for one time step. However, the small time step for an explicit solution, relative to
a baroclinic time step, is determined by the ratio of the speeds of external waves to internal
waves. These speeds can differ by up to two orders of magnitude, so the total operation count
for an implicit solution is much smaller than the operation count for an explicit solution
over many substeps.

We now modify the stability analysis of Section 3.4 in order to account for the effects of
solving the barotropic equations with the implicit scheme outlined above.

When Step 1(a) of the implicit scheme is applied to the barotropic equations (34) in the
linearized system, the result is

ˆ̄vn+1/2 = ˆ̄vn − 1

2
φ ˆ̄un − 1

2r
i Lνy η̂

n − γ

2r
i Lνy δ̂,

and Step 1(b) yields

ˆ̄un+1/2 = ˆ̄un + 1

2
φ ˆ̄vn+1/2 − 1

2r
i Kνx η̂

n+1/2 − γ

2r
i Kνx δ̂

ˆ̄ηn+1/2 = ˆ̄ηn − 1

2r
i Kνx ˆ̄un+1/2 − 1

2r
i Lνy ˆ̄vn

.

Step 1 can then be written in the matrix–vector form

Ehsn+1/2 = E0sn + bδ̂, (42)

where s j = ( ˆ̄u j
, ˆ̄v j

, η̂ j )T and

Eh =




1 −φ

2
1
2r i Kνx

0 1 0
1
2r i Kνx 0 1
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E0 =




1 0 0

−φ

2 1 − 1
2r i Lνy

0 − 1
2r i Lνy 1




b =




− γ

2r i Kνx

− γ

2r i Lνy

0


.

Similarly, Step 2 can be written in the form

F1sn+1 = Fhsn+1/2 + bδ̂, (43)

where

F1 =




1 0 0
φ

2 1 1
2r i Lνy

0 1
2r i Lνy 1




Fh =




1 φ

2 − 1
2r i Kνx

0 1 0

− 1
2r i Kνx 0 1


.

Equations (42) and (43) imply

sn+1 = (
F−1

1 Fh E−1
h E0

)
sn + (

F−1
1 Fh E−1

h + F−1
1

)
bδ̂ ≡ Bsn + Z δ̂. (44)

The quantity δ̂ is given by δ̂ = δ̂n during the prediction step and δ̂ = (δ̂n+1 + δ̂n)/2 during
the correction step.

Equation (44) has the same form as the solution (36) obtained by integrating the barotropic
equations exactly with respect to t for tn < t < tn+1, except that the matrix B = F−1

1 Fh E−1
h E0

replaces the matrix eA, and the vector Z = (F−1
1 Fh E−1

h + F−1
1 )b replaces the vector Z

defined in Eq. (37). With these substitutions, the matrix–vector form of the barotropic–
baroclinic system, with the barotropic equations solved with the ADI method described
above, has the same form as the relation (41) that is obtained when the barotropic equations
are solved exactly.

As in Section 3.4, we compute numerical examples of eigenvalues of the amplification
matrix instead of attempting to characterize the eigenvalues analytically. Figure 5 shows
plots of eigenvalues over the same lines in the (k, �) plane as in Fig. 4. The same model
parameters and vertical scaling are used in the two figures. In both cases, the maximum of
the absolute values of the eigenvalues is 1. A comparison of the two figures indicates that
the ADI method introduces a small amount of dissipation relative to the earlier case. The
amount of dissipation is at most a fraction of a percent over each time step. Experiments
with other values of θ and model parameters yield results similar to those shown in Fig. 5.

An alternative to using δ̂ = (δ̂n+1 + δ̂n)/2 throughout the correction step is to use the
values δ̂ = δ̂n , δ̂ = (δ̂n+1 + δ̂n)/2, and δ̂ = δ̂n+1 when η̂n , η̂n+1/2, and η̂n+1, respectively, are
used. However, an analysis similar to the above indicates that the barotropic–baroclinic
system is unstable in that case.
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FIG. 5. Plots of absolute values of the eigenvalues of the amplification matrix, for the case where the barotropic
equations are solved using the alternating direction implicit method. Plots are shown along lines of the form
� = k tan θ in the (k, �) plane. The top, middle, and bottom frames correspond to θ = 0, θ = 30◦, and θ = 45◦,
respectively. The model parameters and vertical scaling are the same as in Fig. 4.

4. IMPLEMENTATION ISSUES

Section 5 contains the results of some numerical computations involving the time-
stepping method developed in this paper. The present section gives some details of the
implementation of this scheme for those computations. This discussion includes advec-
tion schemes for solving the thickness and momentum equations, the representation of
stresses at interfaces between fluid layers, and some issues related to thin layers and bottom
topography.

4.1. Thickness Equation

The baroclinic layer thickness equation (25) governs the time evolution of the baroclinic
mass variable �p′

r and is given by

∂�p′
r

∂t
+ ∇ · (ur�p′

r ) = �p′
r

p′
b

∇ · (p′
bū). (45)

This equation is solved with the multidimensional positive definite advection transport
algorithm (MPDATA) of Smolarkiewicz and collaborators (e.g., [18]), which consists of
an initial upwind step followed by some antidiffusive corrections to improve accuracy. The
corrections consist of upwind steps using pseudovelocities calculated from the results of
the preceding iteration.

This scheme is designed to ensure that nonnegative fields remain nonnegative, which is
an essential feature for the present application. In a layered ocean model, fluid interfaces can
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intersect the bottom or top of the fluid domain. One way to handle this situation is to assume
that all fluid layers are defined in all mass cells and allow transitions between positive and
negligible layer thickness. For the sake of computational stability, negative thicknesses must
then be disallowed by the algorithm that is used for the thickness equation.

The forcing term on the right side of (45) consists of a depth-independent quantity
multiplied by �p′

r . This term is taken to be an average of values from times tn and tn+1,
and at each time level the barotropic mass divergence ∇ · (p′

bū) is calculated with centered
spatial differences. The forcing term is then implemented as follows. First add half of the
forcing term at time tn (times �t) to (�p′)n , and apply MPDATA to the result. To the result
of the MPDATA operation, add half the forcing term at time tn+1 (times �t). The latter is
calculated from the predicted values of barotropic velocity ū. The factor �p′ in the forcing
term at time tn+1 means that (�p′)n+1 appears linearly in two different terms in the discrete
equation. The quantity (�p′)n+1 is then computed readily. The preceding steps follow a
procedure suggested by Smolarkiewicz and Margolin [18] for implementing forcing terms
with MPDATA, and it is essentially an application of the splitting of Strang [19] to the
present situation.

4.2. Momentum Equation

MPDATA is nearly nonoscillatory, so there are advantages to using this method to solve
the baroclinic momentum equation as well. In this case, the dependent variables can be
of varying sign. This requires a slight modification of the process for calculating pseudo-
velocities for the antidiffusive correction steps, as described in [18].

In order to apply MPDATA in the present situation, the momentum equation must be
converted to a flux form. In the case of the x-component, multiply the x-component of the
momentum equation (24) by �p′

r and multiply the thickness equation (25) by u′
r . Some

manipulation then yields

∂

∂t
(u′

r�p′
r ) + ∂

∂x
[ur (u

′
r�p′

r )] + ∂

∂y
[vr (u

′
r�p′

r )]

= f v′
r�p′

r − �p′
r

(
∂ Mr

∂x
− (∇M)x

)
+ g(�τr )x + ∇ · (AH�p′

r∇ur ) − Gx�p′
r

− ur�p′
r

∂ ū

∂x
− vr�p′

r

∂ ū

∂y
+ u′

r�p′
r

p′
b

∇ · (p′
bū). (46)

The left side of (46) represents advection of the quantity u′
r�p′

r , with an advective velocity
given by the total velocity ur = (ur , vr ). The remaining terms in that equation will be
regarded as forcing terms. As noted above, the quantity �pr/g is the mass per unit horizontal
area in layer r . The quantity (u′

r�p′
r/g, v′

r�p′
r/g) can then be regarded as a baroclinic, two-

dimensional momentum density in layer r and also as a baroclinic rate of horizontal mass
transport. The advection of the y-component v′

r�p′
r is described by an equation that is

analogous to (46).
The computations reported in Section 5 employ a C-grid in space. This grid is used, for

example, in the Miami Isopycnic Coordinate Ocean Model [3, 4]. Suppose that the mass
points are indicated by indices having integer values, and consider the mass cell centered
at (xi , y j ). Values of ur and u′

r�p′
r are then defined at the points (xi±1/2, y j ), and values of
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vr and v′
r�p′

r are defined at the points (xi , y j±1/2). The points (xi±1/2, y j ) and (xi , y j±1/2)
are taken to be centers of x-momentum cells and y-momentum cells, respectively. Spatial
averages of velocities are used to obtain advective velocities at the edges of the momentum
cells.

The time-stepping method described in Section 3.3 requires a prediction and then a
correction of the baroclinic velocity. When the prediction step is applied to the momentum
formulation (46), the advective terms are discretized with the first-order upwind method,
since the prediction step is necessarily first-order because of the forward difference in time.
The layer thickness is also predicted with the upwind method, so that the velocities u′

r and v′
r

can be extracted from the predicted momentum densities u′
r�p′

r and v′
r�p′

r . The extraction
of velocity from momentum is needed in order to obtain advective velocities and calculate
forcing terms. The extraction process is discussed in Section 4.3.

During the correction step, the effects of shear stresses are incorporated in a manner de-
scribed in Section 4.4. The remainder of the forcing from times tn and tn+1 is implemented
with a Strang splitting, in a manner similar to what is done for the layer thickness equa-
tion. Spatial discretization of the forcing terms is achieved through centered differencing
and averaging, and antidiffusive corrections are included in the application of MPDATA to
the advective terms. The antidiffusive corrections in the thickness and momentum equa-
tions constitute a significant portion of the overall computational time in the numerical
experiments described in Section 5.

The Coriolis terms are represented with time averages of momentum densities from times
tn and tn+1, and thus the representation is implicit. In particular, (u′

r�p′
r )

n+1 is represented in
terms of a four-point average of f �t

2 (v′
r�p′

r )
n+1, due to the structure of the C-grid. Similarly,

(v′
r�p′

r )
n+1 is represented in terms of a four-point average of f �t

2 (u′
r�p′

r )
n+1. The implicit

equations can be solved with a fixed-point iteration. After each step of the iteration, the
zero-sum condition on the momentum is enforced via the residual terms Gx�p′

r and G y�p′
r .

The convergence of this iteration can be described as follows.
Let (u′

r�p′
r )

[m] and (v′
r�p′

r )
[m] denote the results of the mth iterations of the momentum

densities. We can define (u′
r�p′

r )
[m+1] in terms of (v′

r�p′
r )

[m] and then (v′
r�p′

r )
[m+1] in

terms of (u′
r�p′

r )
[m+1]. Thus,

max
(x,y)

∣∣(u′
r�p′

r )
[m+1] − (u′

r�p′
r )

[m]
∣∣ ≤

∣∣∣∣ f �t

2

∣∣∣∣ max
(x,y)

∣∣(v′
r�p′

r )
[m] − (v′

r�p′
r )

[m−1]
∣∣ ,

and similarly,

max
(x,y)

∣∣(v′
r�p′

r )
[m] − (v′

r�p′
r )

[m−1]
∣∣ ≤

∣∣∣∣ f �t

2

∣∣∣∣ max
(x,y)

∣∣(u′
r�p′

r )
[m] − (u′

r�p′
r )

[m−1]
∣∣ .

A difference of consecutive iterates is thus contracted by the factor ( f �t/2)2 at each iter-
ation. In the computations described in Section 5, ( f �t/2)2 .= 0.0152. Four iterations are
used, and the contraction after four iterations is ( f �t/2)8 .= 5.4 × 10−8. Relative execution
times for various aspects of the code are discussed at the end of Section 5.

4.3. Extracting Velocity from Momentum

Once a momentum density u′
r�p′

r has been computed, the velocity u′
r can be obtained

by dividing by the values of �p′
r at u-points. The layer thickness equation yields values

of �p′
r at mass points, so an interpolation is required in order to obtain values at velocity
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points. The interpolation method described in Section 4.5 consists of a linear interpolation
between the adjoining mass cells, with modifications near the bottom of the fluid domain
to account for the effects of variablebottom topography.

However, the division of momentum by thickness is problematic in situations where the
thickness approaches zero. In principle, the ratio should be bounded, but in practice the
ratio could become unbounded because of numerical errors in computing the quantities
u′

r�p′
r and �p′

r . The resulting large velocities can then cause a violation of the Courant–
Friedrichs–Lewy condition.

In order to avoid this situation, we limit the velocities as follows. For a given mass
cell in a given layer, compute the total outward mass flow that would be obtained over
one time step if the upwind method were used. With the upwind method, the mass flux
at a cell edge consists of the normal component of total velocity (u′

r + ū or v′
r + v̄) times

the layer thickness in the cell that is being drained. For a given mass cell, the calculation
of the outward mass flow involves all cell edges having outward normal velocity and does
not involve any cell edges having inward normal velocity. If the outward mass flow exceeds
the existing mass in the cell, and if the thickness in the cell is below some small threshold,
then all of the outgoing velocities are limited proportionately so that the outward mass flow
does not exceed the mass currently available in the cell. When the velocities are limited, the
baroclinic velocities (u′

r or v′
r ) are modified, not the depth-independent barotropic velocities

(ū or v̄).
This procedure is applied only when the thickness in a mass cell is below some small

threshold, which was arbitrarily chosen to be 1 cm for the computations described in
Section 5. If the procedure were applied everywhere, then it could conceal algorithmic
or coding problems that are unrelated to the problem of dividing by small thicknesses.
However, in the present formulation, the limiting procedure is applied only in situations
where a layer has little physical significance.

The above procedure does not cause a direct modification of the prognostic variables
u′

r�p′
r and v′

r�p′
r . Instead, the diagnostic quantities u′

r and v′
r are modified, and these

are used to determine advective velocities. The above process thus amounts to a kind of
flux-limiting procedure.

A different method for obtaining velocity from momentum and thickness was developed
by Schär and Smolarkiewicz [17]. In their formulation, the upwind method is used to
compute momentum and thickness, and the antidiffusive corrections to these quantities are
then limited so that the ratio of momentum and thickness is bounded. In [17], the momenta
and thickness are defined at the same grid points, and this methodology did not seem
to extend readily to the present case of a staggered C-grid. The above method was then
developed as an alternative.

4.4. Stresses

The momentum equation is forced by wind stress at the upper surface and by frictional
stress along the bottom. In the present series of computations, the magnitude of the wind
stress decays linearly to zero over a prescribed vertical distance which was taken to be 1 m.
If the top layer has a thickness greater than 1 m, then the wind stress acts as a body force on
that layer. On the other hand, if the thickness of the top layer is less than 1 m, then some of
the wind stress is transmitted directly to lower layers. This procedure prevents large forcing
from being concentrated in arbitrarily thin layers.
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The bottom stress is parameterized by τbot = cDρ0|u|u, where cD = 0.003 is a dimen-
sionless drag coefficient, and ρ0 and u are the density and total velocity, respectively, at
the bottom of the fluid (Bleck and Smith [4]). (Here, we adopt a convention that a stress
is the force per unit area exerted by an upper region on a lower region, so the drag exerted
by the bottom on the fluid is −τbot = −cDρ0|u|u). The value of the bottom velocity u is
a mass-weighted vertical average over a prescribed vertical range, which was taken to be
5 m. The magnitude of the applied bottom stress decays linearly to zero over a distance of
1 m, in a manner analogous to what is done with the wind stress.

Vertical variations of horizontal velocity generate shear stresses between layers. Shear
stress is often modeled by the relation τ = ρ AV

∂u
∂z , where ρ is the density and AV is the

vertical viscosity (Pedlosky [15]). Typically, AV is orders of magnitude smaller than the
horizontal viscosity AH in (46). If the momentum equation is written in a form where
velocity is the dependent variable, then the effect of shear stress is represented as 1

ρ
∂τ
∂z =

1
ρ

∂
∂z (ρ AV

∂u
∂z ).

Now suppose that finite differences in the vertical direction are used to approximate
the effect of shear stresses. In the case of a layered ocean model, it is natural to associate
horizontal velocities with the centers of layers. However, the increments �z in z can be
highly irregular, due to vertical variations in layer thickness, and Taylor expansions in z show
that finite differences on an irregular z-grid need not be consistent with the analytical limit.
Representing the stress formula τ = ρ AV

∂u
∂z is thus problematic in the present situation.

For the sake of the test computations described in Section 5, it is useful to have some
kind of friction between layers, so that under steady forcing the time-dependent system
will converge to a steady state that can be checked against a simple analytical solution. For
present purposes, we represent the shear stress with a finite difference involving a uniform
value of �z. This value was chosen to be �z = √

2AV / f , the thickness of the Ekman
frictional layer (Pedlosky [15]). The stress at the interface between layers r and r + 1 is
then represented by

τr+1/2 = ρ AV

�z
(ur − ur+1), (47)

where ρ is a representative constant value of density. In this representation, the friction
between layers is proportional to the velocity contrast between the layers, without regard to
the thicknesses of the layers. In the velocity difference in (47), it suffices to use the baroclinic
velocity instead of the total velocity, since ur − ur+1 = (u′

r + ū) − (u′
r+1 + ū). However,

using baroclinic velocities at time tn+1 presents a difficulty, since the extraction procedure
of Section 4.3 cannot be employed until the computation of the momentum densities u′

r�p′
r

and v′
r�p′

r is complete.
We therefore use the following implicit procedure for implementing the stresses. Let

(u′
r�p′

r )
∗ denote the value of u′

r�p′
r that would be obtained at time tn+1 if shear stresses,

the residual term Gx�p′
r in (46), and the iteration of Coriolis terms were excluded. This

quantity includes the effects of wind stress and bottom stress. In all layers except the top
and bottom layers, define u′

r at time tn+1 by

(�p′
r )u

′
r = g

(
τr−1/2 − τr+1/2

) + (u′
r�p′

r )
∗

= ρg AV

�z
(u′

r+1 − 2u′
r + u′

r−1) + (u′
r�p′

r )
∗. (48)
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The quantity (�p′
r ) on the left side of (48) is a layer thickness at u-points; the entire left

side of (48) is not the variable that represents momentum density. For the top layer, we have

(�p′
1)u

′
1 = g

(−τ1+1/2
) + (u′

1�p′
1)

∗ = ρg AV

�z
(−u′

1 + u′
2) + (u′

1�p′
1)

∗, (49)

and a similar equation is obtained for the bottom layer. For each horizontal spatial posi-
tion, the preceding equations constitute a simultaneous system of linear equations for the
baroclinic velocities u′

1, . . . , u′
R , where R is the total number of layers. If �p′

r → 0 with
1 < r < R, then Eq. (48) implies that u′

r approaches the average of the values in the layers
immediately above and below. Similarly, (49) implies u′

1 → u′
2 as �p′

1 → 0.
Once the values of u′

r are obtained, the baroclinic momentum density u′
r (�p′

r ) is ob-
tained via a multiplication. The residual term and the iteration of Coriolis terms are then
implemented, followed by the extraction process described in Section 4.3.

An implicit implementation of shear stresses was also used by Holland and Jenkins [13].
In their formulation, the stress at an interface is proportional to the square of the velocity
contrast between the adjacent layers. This representation is then linearized for the sake of
numerical implementation.

4.5. Bottom Topography

In the x-momentum equation (46), the horizontal pressure forcing is represented by the
term

−�p′
r

(
∂ Mr

∂x
− (∇M)x

)
. (50)

This term is evaluated at u-points, and here we describe a method for calculating �p′
r at

such points. Some care must be exercised in computing these values, in order to avoid
false pressure gradients related to variable topography at the bottom of the fluid domain.
Higdon [11] developed a representation of ∇M that is suitable for use with variable bottom
topography, and in that case the possibility of false pressure gradients is also a concern.
However, the present discussion addresses an issue that would be encountered even if a
barotropic–baroclinic splitting were not used.

For definiteness, consider the u-point (xi−1/2, y j ) which lies between the mass cells
centered at (xi−1, y j ) and (xi , y j ). Two possibilities for a value of �p′

r at the u-point are
the arithmetic mean,

�parith
r = �p′

r (xi−1, y j ) + �p′
r (xi , y j )

2
,

and the harmonic mean,

�pharm
r = 2�p′

r (xi−1, y j )�p′
r (xi , y j )

�p′
r (xi−1, y j ) + �p′

r (xi , y j )
.

However, each of these possibilities has some deficiencies. For example, suppose that
�p′

r (xi−1, y j ) > 0 but �p′
r (xi , y j ) = 0. In this case, �parith

r > 0 and �pharm
r = 0. Following

are two scenarios in which one could have such values of �p′
r (xi−1, y j ) and �p′

r (xi , y j ).
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(1) The top of layer r is horizontal and intersects a sloping bottom between the mass
points (xi−1, y j ) and (xi , y j ). In this case, a finite difference of Mr between these points
could be nonzero, due to the greater elevation of the top of layer r at the point (xi , y j ).
However, this computed gradient has no significance in terms of the dynamics of the fluid,
but instead is due entirely to the bottom topography. If this gradient is then multiplied
by a positive value of �p′

r , then a false forcing is applied to the momentum equation. In
particular, a system that should remain at rest could start moving. In this situation, �parith

r

is unsuitable, whereas �pharm
r would have the desirable effect of shutting off the pressure

gradient.
(2) The top of layer r is sloping and intersects a horizontal bottom between the mass

points (xi−1, y j ) and (xi , y j ). In this case, the pressure gradient should remain active. How-
ever, �pharm

r would shut off the pressure gradient, whereas �parith
r would leave it active.

These examples imply that quantities �parith
r and �pharm

r are both unsuitable for general
usage in (50). Instead, we use a method which is a variation of one used by Bleck and
Smith [4]. Under the method in [4], the value of the baroclinic interface pressure p′

r−1/2 at
the top of layer r at the u-point (xi−1/2, y j ) is defined by

p′
r−1/2

(
xi−1/2, y j

) = min

(
p′

r−1/2(xi−1, y j ) + p′
r−1/2(xi , y j )

2
, p′

b(xi−1, y j ), p′
b(xi , y j )

)
.

(51)

Here, p′
b denotes the baroclinic pressure at the bottom of the fluid. The formula (51) can be

visualized as follows. Represent the bottom of the fluid domain with “stairstep” topography,
in which the bottom is regarded as piecewise constant, with elevations given by cell averages.
The interface pressure at a velocity point is an arithmetic mean of the pressures in the adjacent
mass cells, except that an interface is not allowed to extend below the stairstep bottom. The
layer thicknesses at u-points are then defined by �p′

r = p′
r+1/2 − p′

r−1/2. With this method
�p′

r = �parith
r , except perhaps near the bottom of the fluid domain.

As desired, this scheme gives �p′
r = 0 in scenario (1) discussed above, and it gives

�p′
r > 0 in scenario (2). However, it is possible to have �p′

r = 0 when �p′
r (xi−1, y j ) and

�p′
r (xi , y j ) are both positive, as in the following third scenario.

(3) Layer r has positive thickness at each of the mass points (xi−1, y j ) and (xi , y j ), but
the top and bottom of layer r both lie on the bottom of the fluid domain at the intermediate
u-point, as determined by (51). This situation could occur, for example, with thin layers
and steep topography.

In this situation one wants �p′
r > 0 at the u-point, since otherwise the pressure gradient

would not be allowed to let the fluid in layer r flow downhill. We therefore use the following
modification to (51). Starting at the bottom of the fluid and moving upward, lift each interface
at the u-point (as needed) so that the thickness of each layer at the u-point is at least some
fixed fraction of the minimum of the thicknesses at each of the adjacent mass points.

This procedure can be formulated as follows. Suppose that the pressure p′
r+1/2(xi−1/2, y j )

at the bottom of layer r has been determined. Let

p̃′
r−1/2

(
xi−1/2, y j

) = p′
r+1/2

(
xi−1/2, y j

) − β min(�p′
r (xi−1, y j ), �p′

r (xi , y j )), (52)

where β is a constant satisfying 0 < β ≤ 1. Then define p′
r−1/2(xi−1/2, y j ) to be the minimum

of p̃′
r−1/2(xi−1/2, y j ) and the value that would be given by the formula in (51). The layer
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FIG. 6. Illustration of methods for calculating interface pressures at velocity points. The left frame shows the
result of using the method of [4], and the right frame shows the result of using the modification developed in the
present paper.

thicknesses at u-points are then defined by �p′
r = p′

r+1/2 − p′
r−1/2. This representation of

layer thicknesses has the desired properties in scenarios (1)–(3) above.
Figure 6 illustrates the preceding processes. In each frame, the piecewise constant graph

near the bottom illustrates the stairstep topography, the circles represent heights of layer
interfaces at mass points, the x’s denote heights of layer interfaces at the velocity point,
and the solid lines represent the interpolation process which yields interface pressures at
u-points. The left frame shows the result of using the interpolation method of Bleck and
Smith [4], and the right frame shows the result of the modification described above. For this
example, the value β = 0.8 was chosen (rather arbitrarily), and this is the same value used
in the computations described in Section 5. The fourth layer in the left frame illustrates
scenario (3) which was discussed above.

A related but different procedure was used by Holland and Jenkins [13] in order to yield
�p′

r > 0 at any velocity point for which layer r has positive thickness in either of the adjacent
mass cells. The procedure in [13] was motivated by reasons related to the calculation of
mass fluxes at the edges of mass cells.

In the case where the top of a fluid layer lies on the bottom of the fluid domain at
a velocity point, with the modified interpolation method developed in the present paper,
the physical significance of the momentum equation in that layer at that point is ques-
tionable. Instead of employing a solution of this equation at such a point, we instead
set u′

r�p′
r = 0 (or v′

r�p′
r = 0), as the layer is massless anyway. We also set advective

velocities at the edges of any such momentum cell to zero, so as to avoid a spurious loss
or gain of momentum in adjacent cells. In the computations described in Section 5, this
procedure is applied whenever the top of a layer is within 1 cm of the bottom of the fluid
domain.

5. NUMERICAL COMPUTATIONS

Here we describe the results of some numerical computations which test the algorithms
developed in this paper. In addition to testing the time-stepping method itself, these compu-
tations also test the ideas involving thin layers and bottom topography that were developed
in Section 4. We consider a system that is subjected to steady forcing, and the numerical so-
lution converges to a steady state that approximates an analytical solution having piecewise
linear layer interfaces and a discontinuous velocity. In these computations, the horizontal
viscosity is zero. On the other hand, when the code was modified to use the leapfrog method,
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the resulting algorithm was unable to complete the computation, even with substantial time
and space smoothing and a greatly reduced time step.

For the test problem considered here, the fluid domain is an infinite channel having a
trapezoidal cross section, and a layer interface intersects the sloping bottom. The horizon-
tal coordinates satisfy 0 ≤ x ≤ 1000 km, −∞ < y < ∞. The horizontal grid spacing is
�x = �y = 10 km, so there is a total of 100 mass cells in the x-direction. Solid boundaries
are imposed at x = 0 and x = 1000 by placing mass cells of zero depth on each side of the
channel. From the zero-depth cell at x = 0, the depth of the fluid domain varies linearly to
a depth of 500 m at cell 40. A similar linear variation is imposed at the other side of the
channel, and the domain has a constant depth of 500 m for 400 < x < 600.

The system is forced by a constant wind stress at the upper boundary which is directed
in the positive y-direction and has a magnitude of 0.1 N/m2. The Coriolis parameter has a
constant value corresponding to latitude 45◦N, i.e., f = 2� sin 45◦ .= 1.028 × 10−4, where
� is the angular rate of rotation of the Earth. All aspects of the problem are independent
of y, so the solution is also independent of y. The infinite extent in y is simulated by using
periodic boundary conditions, with a total of two mass cells in the y-direction.

The fluid consists of two layers having specific volumes α1 = 0.975 × 10−3 m3/kg and
α2 = 0.970 × 10−3 m3/kg. At time t = 0, the free surface is level and located at z = 0, and
the interface between the layers is located at z = −50. The interface intersects the sloping
bottom on each side of the channel. The lower fluid layer is assumed to be defined at all
grid points, so in the regions where only the upper layer is active, the lower layer is initially
given a negligible thickness (10−8 m).

In these computations, the horizontal viscosity AH is set to zero. A nonzero value of
AH is generally used in geophysical fluid computations, partly as a parameterization of
sub-grid-scale turbulence and partly as a means of suppressing grid-scale numerical noise.
However, the assumption AH = 0 facilitates the construction of analytical solutions, so the
value AH = 0 was chosen for the sake of testing the algorithm. Some initial experiments
were performed with AH > 0, but it was found experimentally that nonzero viscosity is
apparently not needed to suppress grid-scale noise with the present algorithm.

Bottom stress and shear stress are used in the model in order to counteract the wind forcing
at the upper boundary and enable the system to converge to a steady state. These stresses
are represented in the manner described in Section 4.4. In particular, the bottom stress is
assumed to be τbot = cDρ0|u|u, where cD = .003 and ρ0 = 1/α2. The shear stress at the
interface between the layers is represented as τshear = ρ AV

�z (u1 − u2), where �z = √
2AV / f

is the Ekman thickness, the vertical viscosity is AV = 10−4 m2/sec, and ρ = 1/α1.
Given the nature of the wind forcing and friction mechanisms used here, one expects

on physical grounds that the system should converge to a steady state that is constant in
y and involves no motion in the x-direction. Accordingly, we characterize solutions of the
governing equations (17)–(19) for which u = 0, AH = 0, all quantities are independent of y
and t , and all stresses are directed in the y-direction. Under these conditions, the momentum
equations in layer r are

− f vr = −∂ Mr

∂x
(53)

0 = �τ = τr−1/2 − τr+1/2 (54)

for r = 1, 2. Equation (53) represents a geostrophic balance between the Coriolis term and
the pressure gradient, and as seen below, Eq. (54) represents a balance between wind stress
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and bottom stress. The layer thickness equation is not included here, as all of the terms in
that equation are zero in the present situation. The jump condition (19) is

M1 − M2 = pint(α1 − α2), (55)

where pint is the pressure at the interface.
First consider the case where layer r is the only active layer on a given interval in x , i.e.,

the other layer has zero thickness in that interval. In that case, τr−1/2 is the wind stress, and
τr+1/2 is the bottom stress. Equation (54) then implies τwind = τbot = (cD/α2)v

2
r , and thus

vr =
(

α2τwind

cD

)1/2

. (56)

Equations (53) and (56) then determine ∂ Mr/∂x . But M1 = α1 ptop + gztop = gztop, where
ztop is the elevation of the free surface. If layer 2 is the active layer, then layer 1 is massless,
and the jump condition (55) implies M2 = M1. The Montgomery potential in the active layer
therefore satisfies Mr = gztop, whether r = 1 or r = 2. We then have ∂ztop/∂x = f vr/g,
where vr is given by (56). With the parameters used in the present situation, vr

.= 0.180 m/s,
and ∂ztop/∂x

.= 1.89 × 10−6.
Next consider the case where both layers have positive thickness on an interval in x .

Equation (54) implies �τ = 0 in each layer, so τwind = τshear = τbot = (cD/α2)v
2
2 and thus

v2 = (α2τwind/cD)1/2. The representation (47) of shear stress, with ρ = 1/α1, implies v1 =
v2 + (τshearα1�z)/AV . The slope of the free surface is then ∂ztop/∂x = f v1/g. The slope of
the interface between the layers can be characterized as follows. If zint denotes the elevation
of this interface, then the pressure at the interface is pint = (g/α1)(ztop − zint), and the jump
condition (55) implies M1 − M2 = (g�α/α1)(ztop − zint). Here, �α = α1 − α2. Thus,

∂zint

∂x
= ∂ztop

∂x
+ α1

g�α

∂

∂x
(M2 − M1) = f v1

g
+ f α1

g�α
(v2 − v1). (57)

With the parameters used in the present computations, we have v1
.= 1.54 m/s, v2

.=
0.180 m/s, ∂ztop/∂x

.= 1.61 × 10−5 , and ∂zint/∂x
.= −0.00276.

The time step was chosen to be �t = 2400 s, for the following reason. If the fluid domain
had a constant depth of 500 m, then the given choices of densities and initial layer thicknesses
would imply that the external wave speed is c0

.= 70.0 m/s and the internal wave speed is
c1

.= 1.51 m/s (see (26), (27)). If v denotes the largest component of velocity encountered
in the steady state, then (c1 + v)�t/�x

.= 0.73 < 1. Choosing �t = 2400 leaves some
room for larger values of v and nonzero values of u during the transient phase of the
computation.

When MPDATA is used to solve the momentum and layer thickness equations, two anti-
diffusive corrections are used. Some experiments were performed with different numbers of
iterations. For the particular problem configuration used here, two corrections gave slightly
better results in some places than did one correction, whereas three corrections did not seem
to make a noticeable difference.

In these computations the system is initially at rest, and beginning at t = 0 the uniform
wind stress is applied to the upper surface of the fluid. Because of the Coriolis effect, the
fluid in the upper layer shifts in the positive x-direction, so the fluid in the lower layer wells
upward at the left end of the domain. In particular, the fluid interface must move upward
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FIG. 7. Cross sections of the fluid domain for fixed y. The horizontal axis represents the horizontal position
x in kilometers, and the vertical coordinate z is given in meters. The free surface is located at z ≈ 0. The bottom
of the domain is represented by the trapezoidal, piecewise linear function that varies between z = 0 and z = −500.
In each frame, the interface between the two fluid layers is indicated by the curve between the free surface and the
bottom. The dots indicate vertical coordinates associated with individual mass cells. At time t = 0, the interface
is horizontal and located at z = −50. For t > 0, a uniform wind stress is applied at the free surface in the positive
y-direction, which is into the page. Due to the Coriolis effect, the fluid in the upper layer is shifted to the right, so
the fluid in the lower layer wells upward along the left end of the domain.

along the sloping bottom, and eventually the lower layer reaches the upper surface. At the
right end, the upper layer becomes thicker, and the interface must move downward along
the sloping bottom. This aspect of the problem tests the ability of the model to move mass
into empty cells and drain cells that initially contain some fluid.

Figure 7 shows cross sections of the fluid domain at model days 100, 200, and 400. By
day 100, the interface has already migrated to the upper surface at the left end of the domain.
Over the time period shown in Fig. 7, the left edge of the upper layer propagates rightward.

The lateral transport of fluid in the upper layer can be estimated as follows. For the tran-
sient problem, suppose that the dominant balance in the y-component of the momentum
equation (17) is between the Coriolis term and the wind stress, so that the fluid motion
consists of the “Ekman transport” (Gill [8]). Then f u1 ≈ gτwind/�p = α1τwind/�z, where
�z is the vertical distance across layer 1. With the parameters used in the present prob-
lem, u1 ≈ 1.9 cm/s. Movement at this rate over 100 days yields a horizontal displacement
of approximately 160 km, which agrees with the displacements indicated in Fig. 7. The
time evolution of the system is thus consistent with what is to be expected in the present
circumstances.

After about 800 to 1000 days, the system reaches an approximate steady state. The
integration was continued to 4000 days, but there was little change in the solution be-
tween days 1000 and 4000. Some plots of the solution at day 1200 are given in Fig. 8.
In the bottom frame, the solid horizontal lines for x > 715 illustrate the discontinuous
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FIG. 8. Plots of the steady-state solution. After about 800 to 1000 model days, the solution reaches an
approximate steady state, and the present figure shows plots of the solution at day 1200. The top frame shows a
cross section of the fluid domain. In this case, the upper fluid layer is confined to a triangular region in the upper
right corner, and elsewhere the upper layer has negligible thickness. Near the right end of the domain, the lower
layer has negligible thickness. The middle frame shows the elevation of the free surface relative to the initial
elevation z = 0. The bottom frame shows the velocity v1, which is the component of velocity in the upper layer
along the direction of the channel; relative to the plots shown in the upper two frames, this direction is into the
page. The solid horizontal lines for 715 < x < 785 and 785 < x < 1000 are values of velocity found in an analytical
steady-state solution characterized by geostrophic balance and a balance between wind stress and bottom stress.
The x’s in the bottom frame are the computed velocities at locations where the upper layer has negligible thickness,
and these have little physical significance. The text contains comparisons of the slopes of the free surface and
interface with the slopes found in the analytical steady state.

velocity v1 in the steady-state solution discussed above. The small circles indicate the
computed values of v1 on that interval. For x < 715, the upper layer has negligible thick-
ness, and the velocities computed on that interval have little physical significance. These
values of velocity are plotted with x’s in Fig. 8. These values are essentially equal to
the values of v2 on that interval, due to the effect of the shear stress as described in
Section 4.4.

We next compare the slopes of the free surface and interface with the values obtained
earlier for analytical steady-state solutions. First, there is a span of approximately eight mass
cells on which both layers are active. A linear least-squares fit to the interface elevations at
those points yields a slope of approximately −0.00290, whereas the slope in the analytical
steady state discussed above is approximately −0.00276. On this interval, the free-surface
elevation is rather smeared, with a maximum slope of approximately 1.48 × 10−5; in the
analytical case, the slope is approximately 1.61 × 10−5. On the remainder of the domain
only one layer is active, and in the analytical case the slope of the free surface is ap-
proximately 1.89 × 10−6. On the left end of the domain, the slope of the computed free
surface is approximately 1.98 × 10−6, and on the right end the slope is approximately
2.02 × 10−6.
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For the sake of comparing numerical methods, the code was modified to use the leapfrog
method for the baroclinic momentum equation. This amounted to deleting the correction
steps and making some modifications to the remaining routines. However, the two-level
implementation of MPDATA was retained for the layer thickness equation, due to the ne-
cessity of preserving nonnegative layer thickness. This kind of mixed time differencing is
also used in the Miami Isopycnic Coordinate Ocean Model ([3, 4]). This author is not aware
of any nonoscillatory advection schemes for the leapfrog method, so the nonlinear and
Coriolis terms were combined into the form (ur · ∇)ur + f k × u′

r = ∇( 1
2 |ur |2) + (ζr +

f )k × u′
r + ζr k × ū, where ζr = ∂vr/∂x − ∂ur/∂y, and the enstrophy-conserving scheme

of Sadourny [16] was then used to discretize the result. This scheme uses centered differ-
encing and averaging; in particular, the vorticity term (ζr + f )k × u′

r is written in terms of
potential vorticity and mass flux as (

ζr + f
�p′

r
)k × (u′

r�p′
r ), and the terms in this expression

are represented by various second-order spatial averages on a C-grid. The division by layer
thickness is problematic in the case of thin layers, so in that case an analogous formula-
tion was used which does not involve multiplication and division by layer thickness. The
code employs a continuous transition between these two cases. In keeping with the usage
of momentum densities as dependent variables, the preceding representations were then
multiplied by �p′

r at velocity points. The Sadourny scheme is a classical scheme which is
widely regarded as inhibiting the nonlinear cascade of energy to short-wavelength energy
on grid scales. The usage of centered differencing in the nonlinear terms may place the
leapfrog method at a disadvantage relative to a two-level scheme that employs a nearly
nonoscillatory advection scheme, but this illustrates part of the reason for using a two-level
method.

The revised code could not run for long with the model parameters used above, even with
a reduced time step, so some horizontal viscosity and an Asselin filter were introduced. For
most of the subsequent computations, the horizontal viscosity was set at AH = 100 m2/s. In
the initial stages of the computation, the fluid velocity is on the order of a few tenths of a meter
per second. Relative to a fluid velocity of u = 0.1 m/s and a grid spacing of 10,000 m, the
value AH = 100 m2/s gives a Reynolds number of u�x/Ah = 10. The horizontal diffusion
term was evaluated at time tn−1 in order to avoid a leapfrog approximation to diffusion,
which would be unstable. In the Asselin filter, the weighting coefficients were (0.125, 0.75,
0.125). This is a stronger filter than the case (0.05, 0.90, 0.05) which displayed strong
damping in Fig. 2. In addition, the velocity-limiting procedure of Section 4.3 was applied
to all layers with thicknesses less than 1 m instead of 1 cm, and the wind stress and bottom
stress were modified to decay linearly to zero over a vertical distance of 10 m instead of
1 m. With these modifications, and with a succession of smaller time steps down to 300 s,
the computations crashed, usually after about 100 model days. Increasing the horizontal
viscosity from AH = 100 m2/s to AH = 1000 m2/s made little difference. Diagnostic output
for various runs indicated that the model was producing reasonable results for most of the
period of integration, and apparently the problem was related to localized large velocities
allowed by the centered space and time differencing.

Some additional experiments were performed to check execution times for the codes used
in these computations. All of the experiments were performed on a serial workstation. If two
antidiffusive corrections are used when MPDATA is used to solve the momentum and layer
thickness equations, then the execution time for one time step with the two-level code is
about 2.3 times as much as the execution time for one time step with the leapfrog version. If
one correction is used, then the execution time is 2.0 times as much as for leapfrog. However,
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under a linearized stability analysis, the allowable time step for the leapfrog method is less
than half the time step allowed by the present two-level method, so the two-level method
does not suffer a performance penalty relative to the leapfrog method.

Further experiments were performed in order to check execution times of certain indi-
vidual aspects of the two-level algorithm, as coded for these particular computations. The
following remarks assume that two antidiffusive corrections are used with MPDATA. In
this situation, the antidiffusive corrections by themselves account for about 28.5% of the
total execution time. During the correction step for the baroclinic momentum equations,
the Coriolis terms are iterated four times, and this consumes about 6.5% of the time. As
noted in Section 4.2, the residual terms Gx and G y are used to enforce the zero-sum con-
dition on the momentum densities after each iteration, and this process is included in the
6.5%. In this time-stepping algorithm, the barotropic equations are predicted and then cor-
rected, and these two steps together account for a total of about 10.5% of the execution
time.

6. SUMMARY

This paper describes a two-level time-stepping method for use with barotropic–baroclinic
splittings for layered ocean circulation models. Numerical models of ocean circulation
typically admit motions varying on widely differing timescales, and splittings are often
used to separate the fast and slow motions into subsystems that are solved by different
techniques.

The present method involves a prediction and a correction of some of the dependent
variables. After the initial prediction steps, all subsequent steps are based on centered
differencing and averaging about the intermediate time tn+1/2 = (tn + tn+1)/2. In particular,
the sequencing of steps means that an advective velocity is available at time tn+1/2 when
solving the equations for layer thickness and momentum densities in the slow (baroclinic)
system. Such a velocity is needed when employing second-order nonoscillatory advection
algorithms. In this time-stepping scheme the fast (barotropic) system is predicted and then
corrected. However, solving this system twice does not involve a large computational cost,
as it is solved implicitly.

When the time-stepping method is applied to a simple test problem involving the lin-
earized shallow-water equations for a single-layer fluid, it displays less phase error than
the leapfrog method and two other two-level methods that were developed for barotropic–
baroclinic splitting. In addition, it does not generate any amplitude error. The differences
are especially pronounced when comparing the present method with the leapfrog method.

In a layered ocean model, interfaces between layers can intersect the top and/or bottom
of the fluid domain. A common way to deal with this situation is to define all layers
at all grid points and allow for the possibility of layers having negligible thicknesses in
some locations. For the present numerical method, the presence of thin layers and variable
bottom topography raises issues which are discussed in the paper. The new scheme produces
good results in a nonlinear test problem involving vanishing layers at the top and bottom
of the fluid domain and a fluid interface moving upward and downward along sloping
bottom topography. In these computations, the horizontal viscosity is set to zero, and a
nearly nonoscillatory advection algorithm is used to solve the equations for mass and
momentum.
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